MINIMIZE_MULTIVARIATE
Overview
The MINIMIZE_MULTIVARIATE
function finds the minimum of a multivariate mathematical function using scipy.optimize.minimize
. This is useful for business users in Excel who need to optimize costs, maximize efficiency, or find the best value for a given scenario involving multiple variables.
This function is designed for functions of one or more variables (i.e., it can handle both single-variable and multivariate functions), but is most useful for multivariate cases. It leverages numerical optimization algorithms to solve problems of the form:
where is a user-supplied function of variables, and is a vector of decision variables. The user provides as a Python expression in terms of x
, e.g., 'x[0]**2 + x[1]**2 + 3*x[0]'
. The function supports optional bounds, enabling the solution of both unconstrained and bounded optimization problems. The underlying algorithms include BFGS, SLSQP, COBYLA, and others, which use gradient-based or simplex methods to efficiently search for the minimum.
For example, the Rosenbrock function, a classic test problem for optimization algorithms, is defined as:
The function can handle problems with or without bounds, making it flexible for a wide range of business and engineering applications.
This example function is provided as-is without any representation of accuracy.
Usage
To use the MINIMIZE_MULTIVARIATE
function in Excel, enter it as a formula in a cell, specifying your function expression and any optional arguments as needed:
=MINIMIZE_MULTIVARIATE(func_expr, x_zero, [bounds], [method])
func_expr
(string, required): The function to minimize, as a string. Example: “x[0]**2 + x[1]**2 + 3*x[0]”x_zero
(2D list, required): Initial guess for the variables, as a 2D list. Example:{-1,2}
bounds
(2D list, optional, default=None): Optional bounds for variables, as a 2D list of (min, max) pairs. Example:{0,10;0,5}
method
(string, optional, default=None): Optional optimization method. Example: “BFGS”
The function returns a 2D list: [[x0, x1, …, fun]] where x-values are the minimum and fun is the minimum value, or a string with an error message if input is invalid or an error occurs.
Examples
Example 1: Minimize Rosenbrock’s Function (2 variables)
This example minimizes the Rosenbrock function .
In Excel:
=MINIMIZE_MULTIVARIATE("(1 - x[0])**2 + 100*(x[1] - x[0]**2)**2", {-1,2})
Expected output:
x0 | x1 | Minimum Value |
---|---|---|
1.0 | 1.0 | 0.0 |
Example 2: Minimize with Bounds
This example minimizes , with and .
In Excel:
=MINIMIZE_MULTIVARIATE("(x[0]-3)**2 + (x[1]-4)**2 + 7", {1,1}, {0,10;0,10})
Expected output:
x0 | x1 | Minimum Value |
---|---|---|
3.0 | 4.0 | 7.0 |
Python Code
import math
from scipy.optimize import minimize
def minimize_multivariate(func_expr, x_zero, bounds=None, method=None):
"""
Minimizes a multivariate function using scipy.optimize.minimize.
Args:
func_expr (str): Function to minimize, as a string (e.g., 'x[0]**2 + x[1]**2').
x_zero (list[list[float]]): Initial guess for the variables, as a 2D list (e.g., [[0, 0]]).
bounds (list[list[float]] or None): Optional bounds for variables, as a 2D list of (min, max) pairs.
method (str or None): Optional optimization method supported by scipy.optimize.minimize.
Returns:
list[list[float]] or str: [[x0, x1, ..., fun]] where x is the location of minimum and fun is the minimum value, or a string with an error message.
This example function is provided as-is without any representation of accuracy.
"""
if not isinstance(func_expr, str):
return "func_expr must be a string."
if x_zero is None or not (isinstance(x_zero, list) and len(x_zero) > 0 and isinstance(x_zero[0], list)):
return "x_zero (initial guess) must be provided as a 2D list, e.g., [[0, 0]]."
x0_row = x_zero[0]
if not all(isinstance(v, (int, float)) for v in x0_row):
return "x_zero (initial guess) must be a 2D list of numbers."
bounds_list = None
if bounds is not None:
if not (isinstance(bounds, list) and all(isinstance(b, (list, tuple)) and len(b) == 2 for b in bounds)):
return "bounds must be a 2D list of (min, max) pairs or None."
bounds_list = [tuple(b) for b in bounds]
method_str = None
if method is not None:
if isinstance(method, list):
if len(method) > 0 and isinstance(method[0], list):
method_str = method[0][0] if len(method[0]) > 0 else None
elif len(method) > 0 and isinstance(method[0], str):
method_str = method[0]
else:
return "method must be a string, 2D list, or None."
elif isinstance(method, str):
method_str = method
else:
return "method must be a string, 2D list, or None."
if 'x' not in func_expr:
return "Function expression must contain the variable 'x'."
def func(x):
try:
return eval(func_expr, {"x": x, "math": math})
except Exception as e:
return float('inf')
kwargs = {}
if bounds_list is not None:
kwargs['bounds'] = bounds_list
if method_str is not None:
kwargs['method'] = method_str
try:
result = minimize(func, x0_row, **kwargs)
if not hasattr(result, 'x') or not hasattr(result, 'fun'):
return "Error during minimization: Invalid result object."
if not result.success or not isinstance(result.fun, (int, float)) or result.fun == float('inf'):
msg = getattr(result, 'message', None)
if msg:
return f"Error during minimization: {msg}"
return "Error during minimization: Optimization failed."
x_list = [float(xi) for xi in result.x]
return [x_list + [float(result.fun)]]
except ValueError as ve:
return str(ve)
except Exception as e:
return f"Error during minimization: {str(e)}"
Live Notebook
Edit this function in a live notebook .