Skip to Content

MINIMIZE_SCALAR

Overview

The MINIMIZE_SCALAR function finds the minimum value of a scalar mathematical function f(x)f(x), where xx is a real number (i.e., a function of a single variable only). This is useful for business users in Excel who need to optimize costs, maximize efficiency, or find the best value for a given scenario. The function leverages scipy.optimize.minimize_scalar and allows users to specify the function as a string, with optional bounds and method. The minimization problem can be stated as:

minxf(x)\min_x f(x)

where f(x)f(x) is the user-provided function expression. If bounds are provided, the minimization is performed over the interval [a,b][a, b].

This example function is provided as-is without any representation of accuracy.

Usage

To use the function in Excel:

=MINIMIZE_SCALAR(func_expr, [bounds], [method])
  • func_expr (string, required): The function to minimize, as a string (e.g., "x**2 + 3*x + 2"). Example: "x**2 + 3*x + 2"
  • bounds (2D list, optional): 2D list [[min, max]] for bounded minimization. Example: [[0, 10]]
  • method (string, optional): Optimization method: "brent", "bounded", or "golden". Example: "bounded"

The function returns a 2D list [[x, fun]] where x is the location of the minimum and fun is the minimum value, or a string error message if input is invalid or an error occurs.

Examples

Example 1: Minimize a Quadratic Cost Function

This example minimizes x2+3x+2x^2 + 3x + 2 with no bounds.

In Excel:

=MINIMIZE_SCALAR("x**2 + 3*x + 2")

Expected output:

xfun
-1.5-0.25

Example 2: Minimize a Function with Bounds

This example minimizes (x5)2+10(x-5)^2 + 10 over [0,10][0, 10] using the bounded method.

In Excel:

=MINIMIZE_SCALAR("(x-5)**2 + 10", {0,10}, "bounded")

Expected output:

xfun
5.010.0

Python Code

from scipy.optimize import minimize_scalar as scipy_minimize_scalar import math def minimize_scalar(func_expr, bounds=None, method=None): """ Minimizes a scalar function using scipy.optimize.minimize_scalar. Args: func_expr (str): The function to minimize, as a string (e.g., 'x**2 + 3*x + 2'). bounds (list, optional): 2D list [[min, max]] for bounded minimization. method (str, optional): Optimization method: 'brent', 'bounded', or 'golden'. Returns: list: [[x, fun]] where x is the location of minimum and fun is the minimum value, or a string error message if input is invalid or an error occurs. This example function is provided as-is without any representation of accuracy. """ # Validate func_expr if not isinstance(func_expr, str): return "func_expr must be a string." if 'x' not in func_expr: return "Function expression must contain the variable 'x'." # Validate method if method is not None and not isinstance(method, str): return "method must be a string or None." # Validate bounds if bounds is not None: if not (isinstance(bounds, list) and len(bounds) == 1 and isinstance(bounds[0], list) and len(bounds[0]) == 2): return "bounds must be a 2D list [[min, max]] or None." # Method/bounds logic if method == 'bounded': if bounds is None: return "Method 'bounded' requires bounds to be specified." elif method in ['brent', 'golden']: if bounds is not None: return f"Method '{method}' cannot be used with bounds. Use 'bounded' instead." # Define function def func(x): try: return eval(func_expr, {"x": x, "math": math}) except Exception: return float('nan') # Prepare kwargs kwargs = {} if bounds is not None: min_val, max_val = bounds[0][0], bounds[0][1] kwargs['bounds'] = (min_val, max_val) if method is not None: kwargs['method'] = method # Run minimization try: result = scipy_minimize_scalar(func, **kwargs) if not hasattr(result, 'success') or not result.success or math.isnan(result.x) or math.isnan(result.fun): return f"Error during minimization: {getattr(result, 'message', 'Unknown error')}" return [[float(result.x), float(result.fun)]] except Exception as e: return f"Error during minimization: {str(e)}"

Live Notebook

Edit this function in a live notebook.

Live Demo

Last updated on