DENDROGRAM
Overview
Performs hierarchical (agglomerative) clustering on numeric data and returns a dendrogram plot as a base64-encoded PNG image. This function is designed for use in Excel, where you can pass a 2D list or a single column of numbers. By default, Ward’s method is used for clustering, but you may specify other linkage methods. The result is visualized as a dendrogram.
Ward’s method minimizes the total within-cluster variance. At each step, the pair of clusters with the minimum increase in total within-cluster variance after merging are combined. The increase in variance when merging clusters and is:
See scipy.cluster.hierarchy documentation for more details on the available methods.
This example function is provided as-is without any representation of accuracy.
Usage
To use the function in Excel:
=DENDROGRAM(data, [method])data(2D list, required): Numeric data for clustering (one or more columns).method(string (enum), optional, default=“ward”): Linkage method. Valid options:"ward"(minimizes within-cluster variance),"single"(minimum distance between clusters),"complete"(maximum distance between clusters),"average"(average distance between clusters),"weighted"(weighted distance between clusters),"centroid"(distance between centroids of clusters), or"median"(median distance between clusters).
The function returns a base64-encoded PNG image of the dendrogram as a string. If the calculation fails, an error message string is returned.
Examples
Example 1: Cluster a List of Values (Default: Ward)
Sample input data (Excel range A1:A10):
| Value |
|---|
| 9.6 |
| 9.8 |
| 10 |
| 10.4 |
| 10.8 |
| 11 |
| 11.2 |
| 12 |
| 13 |
| 14 |
In Excel:
=DENDROGRAM(A1:A10)Expected output: A base64-encoded PNG string (truncated):
"..."Example 2: Cluster with Complete Linkage
=DENDROGRAM(A1:A10, "complete")Expected output: A base64-encoded PNG string (truncated):
"..."Python Code
import matplotlib
matplotlib.use("Agg")
import base64
import io
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram as hierarchy_dendrogram
from scipy.cluster.hierarchy import linkage
options = {"insert_only":True}
# The function below performs hierarchical clustering and returns a dendrogram image as a base64 string.
def dendrogram(data: list[list[float]], method: str = "ward") -> str:
"""
Performs hierarchical (agglomerative) clustering on numeric data and returns a dendrogram as a base64-encoded PNG image or an error message.
Args:
data: 2D list of float, required. Numeric data for clustering (Excel range or list).
method: str, optional, default="ward". Linkage method for clustering. One of 'single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward'.
Returns:
str: Base64-encoded PNG image of the dendrogram, or error message if calculation fails.
This example function is provided as-is without any representation of accuracy.
"""
# Convert input to numpy array, flatten if 1D
try:
arr = np.array(data, dtype=float)
except Exception:
# Remove non-numeric rows manually
arr_clean = []
for row in data:
try:
arr_clean.append([float(x) for x in row])
except Exception:
continue
arr = np.array(arr_clean, dtype=float)
if arr.size == 0:
return "Error: Not enough data."
if arr.ndim == 1:
arr = arr.reshape(-1, 1)
elif arr.ndim == 2 and arr.shape[1] == 1:
arr = arr
elif arr.ndim == 2:
arr = arr.astype(float)
else:
return "Error: Invalid input data."
# Remove non-numeric rows
arr = arr[np.isfinite(arr).all(axis=1)]
if arr.shape[0] < 2:
return "Error: Not enough data."
# Perform hierarchical clustering
try:
linkage_matrix = linkage(arr, method=method)
except Exception:
try:
linkage_matrix = linkage(arr, method="ward")
except Exception:
return "Error: Clustering failed."
# Plot dendrogram
plt.figure(figsize=(8, 4))
hierarchy_dendrogram(linkage_matrix)
plt.title(f"Hierarchical Clustering Dendrogram ({method})")
plt.xlabel("Sample Index")
plt.ylabel("Distance")
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format="png")
plt.close()
img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_b64}"