BARNARD_EXACT
Overview
The BARNARD_EXACT
function performs Barnard’s exact test on a 2x2 contingency table. This test is a more powerful alternative to Fisher’s exact test for 2x2 tables, as it does not condition on both marginal totals but instead maximizes over a nuisance parameter. The test uses the Wald statistic with pooled or unpooled variance to test the hypothesis that two binomial proportions are equal. The calculation involves quasi-Monte Carlo sampling to compute exact p-values, which is not possible with standard Excel functions. For more details, see the scipy.stats.barnard_exact documentation .
Excel has no equivalent to Barnard’s exact test. This advanced statistical test requires sophisticated algorithms for computing exact p-values by maximizing over nuisance parameters and using quasi-Monte Carlo sampling methods. The computational complexity and specialized statistical methodology make it impossible to implement with standard Excel functions.
This example function is provided as-is without any representation of accuracy.
Usage
To use the function in Excel:
=BARNARD_EXACT(table, [alternative], [pooled])
table
(2D list, required): 2x2 contingency table with non-negative integer entries.alternative
(string, optional, default=“two-sided”): Defines the alternative hypothesis. Options are"two-sided"
,"less"
, or"greater"
.pooled
(bool, optional, default=TRUE): Whether to use pooled variance (TRUE) or unpooled variance (FALSE).
The function returns a single row (2D list) with two elements: the Wald statistic and the p-value. If the input is invalid, an error message (string) is returned.
Examples
Example 1: Default two-sided test
Inputs:
table | alternative | pooled | |
---|---|---|---|
7 | 12 | two-sided | TRUE |
8 | 3 |
Excel formula:
=BARNARD_EXACT({7,12;8,3})
Expected output:
Statistic | P-value |
---|---|
-1.894 | 0.06814 |
Example 2: One-sided test (less)
Inputs:
table | alternative | pooled | |
---|---|---|---|
7 | 12 | less | TRUE |
8 | 3 |
Excel formula:
=BARNARD_EXACT({7,12;8,3}, "less")
Expected output:
Statistic | P-value |
---|---|
-1.894 | 0.03407 |
Example 3: One-sided test (greater)
Inputs:
table | alternative | pooled | |
---|---|---|---|
7 | 12 | greater | TRUE |
8 | 3 |
Excel formula:
=BARNARD_EXACT({7,12;8,3}, "greater")
Expected output:
Statistic | P-value |
---|---|
-1.894 | 0.9659 |
Example 4: Unpooled variance
Inputs:
table | alternative | pooled | |
---|---|---|---|
7 | 12 | two-sided | FALSE |
8 | 3 |
Excel formula:
=BARNARD_EXACT({7,12;8,3}, "two-sided", FALSE)
Expected output:
Statistic | P-value |
---|---|
-2.018932133 | 0.068153433 |
Python Code
from scipy.stats import barnard_exact as scipy_barnard_exact
def barnard_exact(table, alternative='two-sided', pooled=True):
"""
Perform Barnard's exact test on a 2x2 contingency table.
Args:
table: 2D list (2x2) contingency table with non-negative integer entries.
alternative: Defines the alternative hypothesis. Options are 'two-sided', 'less', 'greater'.
pooled: Whether to use pooled variance (True) or unpooled variance (False).
Returns:
A 2D list containing the Wald statistic and p-value, each as a separate element in the first row.
This example function is provided as-is without any representation of accuracy.
"""
# Validate table
if not isinstance(table, list) or len(table) != 2 or not all(isinstance(row, list) and len(row) == 2 for row in table):
return "Invalid input: table must be a 2x2 list of non-negative integers."
try:
arr = [[int(x) for x in row] for row in table]
except Exception:
return "Invalid input: table must contain integers."
if any(x < 0 for row in arr for x in row):
return "Invalid input: table must contain non-negative integers."
# Validate alternative
if alternative not in ['two-sided', 'less', 'greater']:
return "Invalid input: alternative must be 'two-sided', 'less', or 'greater'."
# Validate pooled
if not (pooled is True or pooled is False):
return "Invalid input: pooled must be True or False."
try:
res = scipy_barnard_exact(arr, alternative=alternative, pooled=pooled)
stat = float(res.statistic)
pval = float(res.pvalue)
# Disallow nan/inf
if any([s in [float('inf'), float('-inf')] or s != s for s in [stat, pval]]):
return "Invalid output: statistic or p-value is not finite."
return [[stat, pval]]
except Exception as e:
return f"scipy.stats.barnard_exact error: {e}"