Skip to Content

UNIFORM

Overview

The UNIFORM function provides a unified interface to the main methods of the Uniform distribution, including PDF, CDF, inverse CDF, survival function, and distribution statistics.

Excel does not provide a native UNIFORM.DIST function. While Excel has RAND and RANDBETWEEN for generating uniform random numbers, it does not support direct calculation of the PDF, CDF, inverse CDF, or other distribution statistics for the uniform distribution. The Python function in Excel here provides a complete set of distribution methods, including PDF, CDF, quantile, survival, and statistics.

The Uniform distribution is used to model a random variable that has an equal probability of taking any value within a specified interval. The PDF is given by:

f(x,loc,scale)=1/scalef(x, loc, scale) = 1/scale

for xx in [loc,loc+scale][loc, loc + scale], scale>0scale > 0.

For more details, see the official SciPy documentation.

This example function is provided as-is without any representation of accuracy.

Usage

To use the function in Excel:

=UNIFORM(value, [loc], [scale], [method])
  • value (float, required for pdf, cdf, icdf, sf, isf):
    • For pdf, cdf, sf: the value xx at which to evaluate the function (must be loceqxeqloc+scaleloc eq x eq loc + scale)
    • For icdf, isf: the probability qq (must be between 0 and 1)
    • For mean, median, var, std: skip parameter
  • loc (float, optional, default=0.0): Location parameter.
  • scale (float, optional, default=1.0): Scale parameter. Must be >0> 0.
  • method (string, optional, default=“pdf”): One of pdf, cdf, icdf, sf, isf, mean, median, var, std.
MethodDescriptionOutput
pdfProbability Density Function: f(x)f(x), the likelihood of a specific value xx.Density at xx
cdfCumulative Distribution Function: P(Xeqx)P(X eq x), the probability that XX is less than or equal to xx.Probability
icdfInverse CDF (Quantile Function): Returns xx such that P(Xeqx)=qP(X eq x) = q for a given probability qq.Value xx
sfSurvival Function: P(X>x)P(X > x), the probability that XX is greater than xx.Probability
isfInverse Survival Function: Returns xx such that P(X>x)=qP(X > x) = q for a given probability qq.Value xx
meanMean (expected value) of the distribution.Mean value
medianMedian of the distribution.Median value
varVariance of the distribution.Variance
stdStandard deviation of the distribution.Standard deviation

The function returns a single value (float): the result of the requested method, or an error message (string) if the input is invalid.

Examples

Example 1: PDF at x=0.5

Inputs:

valuelocscalemethod
0.501pdf

Excel formula:

=UNIFORM(0.5, 0, 1, "pdf")

Expected output:

Result
1.0

Example 2: CDF at x=0.5

Inputs:

valuelocscalemethod
0.501cdf

Excel formula:

=UNIFORM(0.5, 0, 1, "cdf")

Expected output:

Result
0.5

Example 3: Inverse CDF (Quantile) at q=0.5

Inputs:

valuelocscalemethod
0.501icdf

Excel formula:

=UNIFORM(0.5, 0, 1, "icdf")

Expected output:

Result
0.5

Example 4: Mean of the distribution

Inputs:

valuelocscalemethod
01mean

Excel formula:

=UNIFORM( , 0, 1, "mean")

Expected output:

Result
0.5

Python Code

from scipy.stats import uniform as scipy_uniform import math def uniform(value=None, loc=0.0, scale=1.0, method="pdf"): """ Uniform distribution function supporting multiple methods. Args: value: Input value (float), required for methods except 'mean', 'median', 'var', 'std'. loc: Location parameter (float, default: 0.0). scale: Scale parameter (float, default: 1.0, >0). method: Which method to compute (str): 'pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'. Default is 'pdf'. Returns: Result of the requested method (float or str), or an error message (str) if input is invalid. This example function is provided as-is without any representation of accuracy. """ valid_methods = ['pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'] if not isinstance(method, str) or method.lower() not in valid_methods: return f"Invalid method: {method}. Must be one of {valid_methods}." method = method.lower() try: loc = float(loc) scale = float(scale) except Exception: return "Invalid input: loc and scale must be numbers." if scale <= 0: return "Invalid input: scale must be > 0." dist = scipy_uniform(loc, scale) # Methods that require value if method in ['pdf', 'cdf', 'icdf', 'sf', 'isf']: if value is None: return f"Invalid input: missing required argument 'value' for method '{method}'." try: value = float(value) except Exception: return "Invalid input: value must be a number." if method in ['pdf', 'cdf', 'sf'] and not (loc <= value <= loc + scale): return "Invalid input: value must be between loc and loc + scale for this method." try: if method == 'pdf': result = dist.pdf(value) elif method == 'cdf': result = dist.cdf(value) elif method == 'sf': result = dist.sf(value) elif method == 'isf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for isf." result = dist.isf(value) elif method == 'icdf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for icdf." result = dist.ppf(value) except Exception as e: return f"scipy.stats.uniform error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result # Methods that do not require value try: if method == 'mean': result = dist.mean() elif method == 'median': result = dist.median() elif method == 'var': result = dist.var() elif method == 'std': result = dist.std() except Exception as e: return f"scipy.stats.uniform error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result

Live Notebook

Edit this function in a live notebook.

Live Demo

Last updated on