POISSON_DIST
Overview
The POISSON_DIST
function computes values related to the Poisson distribution, a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space, given the average number of times the event occurs over that interval. This function can return the probability mass function (PMF), cumulative distribution function (CDF), or survival function (SF) for a given value, as well as the mean or variance of the distribution. The Poisson distribution is defined by the parameter (mean rate of occurrence). The probability mass function is:
where and .
For more details, see the scipy.stats.poisson documentation .
This example function is provided as-is without any representation of accuracy.
Usage
To use the function in Excel:
=POISSON_DIST(k, mu, [mode], [loc])
k
(float or 2D list, required): Value(s) at which to evaluate the distribution. For PMF, CDF, and SF, this is the event count. For ‘mean’ or ‘var’ mode, this is ignored and can be set to 0.mu
(float, required): The mean (expected value, ) of the distribution. Must be .mode
(str, optional, default=“pmf”): Output type. One of"pmf"
,"cdf"
,"sf"
,"mean"
, or"var"
.loc
(float, optional, default=0): Location parameter (shifts the distribution).
The function returns a scalar or 2D list of floats (for array input), or an error message (string) if the input is invalid. The output depends on the selected mode:
pmf
: Probability mass function at k.cdf
: Cumulative distribution function at k.sf
: Survival function (1 - CDF) at k.mean
: Mean of the distribution.var
: Variance of the distribution.
Examples
Example 1: PMF at k=3, mu=2
Inputs:
k | mu | mode | loc |
---|---|---|---|
3 | 2 | pmf | 0 |
Excel formula:
=POISSON_DIST(3, 2, "pmf", 0)
Expected output:
Result |
---|
0.1804 |
Example 2: CDF at k=3, mu=2
Inputs:
k | mu | mode | loc |
---|---|---|---|
3 | 2 | cdf | 0 |
Excel formula:
=POISSON_DIST(3, 2, "cdf", 0)
Expected output:
Result |
---|
0.8571 |
Example 3: Survival Function at k=3, mu=2
Inputs:
k | mu | mode | loc |
---|---|---|---|
3 | 2 | sf | 0 |
Excel formula:
=POISSON_DIST(3, 2, "sf", 0)
Expected output:
Result |
---|
0.1429 |
Example 4: Mean and Variance
Inputs:
k | mu | mode | loc |
---|---|---|---|
0 | 2 | mean | 0 |
0 | 2 | var | 0 |
Excel formulas:
=POISSON_DIST(0, 2, "mean", 0)
=POISSON_DIST(0, 2, "var", 0)
Expected outputs:
Result |
---|
2 |
2 |
Python Code
from scipy.stats import poisson as scipy_poisson
def poisson_dist(k, mu, mode="pmf", loc=0):
"""
Compute Poisson distribution values: PMF, CDF, SF, mean, or variance.
Args:
k: Value(s) at which to evaluate (float or 2D list).
mu: Mean of the distribution (float, >=0).
mode: Output type: 'pmf', 'cdf', 'sf', 'mean', or 'var'.
loc: Location parameter (float, default 0).
Returns:
Scalar or 2D list of floats, or error message (str) if invalid.
This example function is provided as-is without any representation of accuracy.
"""
# Validate mu
try:
mu_val = float(mu)
if mu_val < 0:
return "Invalid input: mu must be >= 0."
except Exception:
return "Invalid input: mu must be a number."
# Validate loc
try:
loc_val = float(loc)
except Exception:
return "Invalid input: loc must be a number."
# Validate mode
if not isinstance(mode, str) or mode not in ["pmf", "cdf", "sf", "mean", "var"]:
return "Invalid input: mode must be one of 'pmf', 'cdf', 'sf', 'mean', or 'var'."
# Helper to process k (scalar or 2D list)
def process_k(val):
try:
return float(val)
except Exception:
return None
# Handle mean/var
if mode == "mean":
return mu_val
if mode == "var":
return mu_val
# PMF, CDF, SF
def compute(val):
kval = process_k(val)
if kval is None:
return "Invalid input: k must be a number."
if mode == "pmf":
return float(scipy_poisson.pmf(kval, mu_val, loc=loc_val))
elif mode == "cdf":
return float(scipy_poisson.cdf(kval, mu_val, loc=loc_val))
elif mode == "sf":
return float(scipy_poisson.sf(kval, mu_val, loc=loc_val))
# 2D list or scalar
if isinstance(k, list):
# 2D list
if not all(isinstance(row, list) for row in k):
return "Invalid input: k must be a scalar or 2D list."
result = []
for row in k:
result_row = []
for val in row:
out = compute(val)
if isinstance(out, str):
return out
result_row.append(out)
result.append(result_row)
return result
else:
return compute(k)
Live Notebook
Edit this function in a live notebook .