Skip to Content

EXPON

Overview

The EXPON function provides a unified interface to the main methods of the Exponential distribution, including PDF, CDF, inverse CDF, survival function, and distribution statistics.

Excel provides the EXPON.DIST function, which can compute the PDF and CDF for the exponential distribution. The Python function in Excel here also supports the inverse CDF (quantile), survival function, inverse survival, and distribution statistics (mean, median, variance, standard deviation), as well as location and scale parameters, which are not available in native Excel functions.

The Exponential distribution is commonly used to model the time between events in a Poisson process. The PDF is given by:

f(x,loc,scale)=1scaleexp(xlocscale)f(x, loc, scale) = \frac{1}{scale} \exp\left(-\frac{x - loc}{scale}\right)

for xlocx \geq loc, scale>0scale > 0.

The Exponential distribution is a continuous probability distribution with a single scale parameter (sometimes parameterized by rate λ=1/scale\lambda = 1/scale). It is a special case of the gamma distribution.

For more details, see the official SciPy documentation.

This example function is provided as-is without any representation of accuracy.

Usage

To use the function in Excel:

=EXPON(value, [loc], [scale], [method])
  • value (float, required for pdf, cdf, icdf, sf, isf):
    • For pdf, cdf, sf: the value xx at which to evaluate the function (must be loc\geq loc)
    • For icdf, isf: the probability qq (must be between 0 and 1)
    • For mean, median, var, std: skip parameter
  • loc (float, optional, default=0.0): Location parameter.
  • scale (float, optional, default=1.0): Scale parameter. Must be >0> 0.
  • method (string, optional, default=“pdf”): One of pdf, cdf, icdf, sf, isf, mean, median, var, std.
MethodDescriptionOutput
pdfProbability Density Function: f(x)f(x), the likelihood of a specific value xx.Density at xx
cdfCumulative Distribution Function: P(Xx)P(X \leq x), the probability that XX is less than or equal to xx.Probability
icdfInverse CDF (Quantile Function): Returns xx such that P(Xx)=qP(X \leq x) = q for a given probability qq.Value xx
sfSurvival Function: P(X>x)P(X > x), the probability that XX is greater than xx.Probability
isfInverse Survival Function: Returns xx such that P(X>x)=qP(X > x) = q for a given probability qq.Value xx
meanMean (expected value) of the distribution.Mean value
medianMedian of the distribution.Median value
varVariance of the distribution.Variance
stdStandard deviation of the distribution.Standard deviation

The function returns a single value (float): the result of the requested method, or an error message (string) if the input is invalid.

Examples

Example 1: PDF at x=2

Inputs:

valuelocscalemethod
201pdf

Excel formula:

=EXPON(2, 0, 1, "pdf")

Expected output:

Result
0.1353

Example 2: CDF at x=2

Inputs:

valuelocscalemethod
201cdf

Excel formula:

=EXPON(2, 0, 1, "cdf")

Expected output:

Result
0.8647

Example 3: Inverse CDF (Quantile) at q=0.8647

Inputs:

valuelocscalemethod
0.864701icdf

Excel formula:

=EXPON(0.8647, 0, 1, "icdf")

Expected output:

Result
2.0003

Example 4: Mean of the distribution

Inputs:

valuelocscalemethod
01mean

Excel formula:

=EXPON( , 0, 1, "mean")

Expected output:

Result
1.0

Python Code

from scipy.stats import expon as scipy_expon import math def expon(value=None, loc=0.0, scale=1.0, method="pdf"): """ Exponential distribution function supporting multiple methods. Args: value: Input value (float), required for methods except 'mean', 'median', 'var', 'std'. loc: Location parameter (float, default: 0.0). scale: Scale parameter (float, default: 1.0, >0). method: Which method to compute (str): 'pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'. Default is 'pdf'. Returns: Result of the requested method (float or str), or an error message (str) if input is invalid. This example function is provided as-is without any representation of accuracy. """ valid_methods = ['pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'] if not isinstance(method, str) or method.lower() not in valid_methods: return f"Invalid method: {method}. Must be one of {valid_methods}." method = method.lower() try: loc = float(loc) scale = float(scale) except Exception: return "Invalid input: loc and scale must be numbers." if scale <= 0: return "Invalid input: scale must be > 0." dist = scipy_expon(loc, scale) # Methods that require value if method in ['pdf', 'cdf', 'icdf', 'sf', 'isf']: if value is None: return f"Invalid input: missing required argument 'value' for method '{method}'." try: value = float(value) except Exception: return "Invalid input: value must be a number." if method in ['pdf', 'cdf', 'sf'] and value < loc: return "Invalid input: value must be >= loc for this method." try: if method == 'pdf': result = dist.pdf(value) elif method == 'cdf': result = dist.cdf(value) elif method == 'sf': result = dist.sf(value) elif method == 'isf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for isf." result = dist.isf(value) elif method == 'icdf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for icdf." result = dist.ppf(value) except Exception as e: return f"scipy.stats.expon error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result # Methods that do not require value try: if method == 'mean': result = dist.mean() elif method == 'median': result = dist.median() elif method == 'var': result = dist.var() elif method == 'std': result = dist.std() except Exception as e: return f"scipy.stats.expon error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result

Live Demo

Example Workbook

Link to Workbook

Last updated on