T_DIST
Overview
The T_DIST
function provides a unified interface to the main methods of the Student’s t distribution, including PDF, CDF, inverse CDF, survival function, and distribution statistics.
Excel provides several t-distribution functions, including T.DIST, T.DIST.2T, T.DIST.RT for the PDF and CDF, and T.INV, T.INV.2T for the inverse CDF (quantile). The Python function in Excel here also supports the survival function, inverse survival, and distribution statistics (mean, median, variance, standard deviation), as well as location and scale parameters, which are not available in native Excel functions.
The Student’s t distribution is widely used in statistics, especially for hypothesis testing and confidence intervals when the sample size is small and the population standard deviation is unknown. The PDF is given by:
for , .
The t distribution is symmetric and bell-shaped, like the normal distribution, but has heavier tails. The degrees of freedom parameter (df
) controls the shape; as df
increases, the t distribution approaches the normal distribution.
For more details, see the official SciPy documentation .
This example function is provided as-is without any representation of accuracy.
Usage
To use the function in Excel:
=T_DIST(value, df, [loc], [scale], [method])
value
(float, required for pdf, cdf, icdf, sf, isf):- For
pdf
,cdf
,sf
: the value at which to evaluate the function - For
icdf
,isf
: the probability (must be between 0 and 1) - For
mean
,median
,var
,std
: skip parameter
- For
df
(float, required): Degrees of freedom. Must be .loc
(float, optional, default=0.0): Location parameter.scale
(float, optional, default=1.0): Scale parameter. Must be .method
(string, optional, default=“pdf”): One ofpdf
,cdf
,icdf
,sf
,isf
,mean
,median
,var
,std
.
Method | Description | Output |
---|---|---|
pdf | Probability Density Function: , the likelihood of a specific value . | Density at |
cdf | Cumulative Distribution Function: , the probability that is less than or equal to . | Probability |
icdf | Inverse CDF (Quantile Function): Returns such that for a given probability . | Value |
sf | Survival Function: , the probability that is greater than . | Probability |
isf | Inverse Survival Function: Returns such that for a given probability . | Value |
mean | Mean (expected value) of the distribution. | Mean value |
median | Median of the distribution. | Median value |
var | Variance of the distribution. | Variance |
std | Standard deviation of the distribution. | Standard deviation |
The function returns a single value (float): the result of the requested method, or an error message (string) if the input is invalid.
Examples
Example 1: PDF at x=0
Inputs:
value | df | loc | scale | method |
---|---|---|---|---|
0 | 5 | 0 | 1 |
Excel formula:
=T_DIST(0, 5, 0, 1, "pdf")
Expected output:
Result |
---|
0.3796067 |
Example 2: CDF at x=0
Inputs:
value | df | loc | scale | method |
---|---|---|---|---|
0 | 5 | 0 | 1 | cdf |
Excel formula:
=T_DIST(0, 5, 0, 1, "cdf")
Expected output:
Result |
---|
0.5 |
Example 3: Inverse CDF (Quantile) at q=0.975
Inputs:
value | df | loc | scale | method |
---|---|---|---|---|
0.975 | 5 | 0 | 1 | icdf |
Excel formula:
=T_DIST(0.975, 5, 0, 1, "icdf")
Expected output:
Result |
---|
2.570582 |
Example 4: Mean of the distribution
Inputs:
value | df | loc | scale | method |
---|---|---|---|---|
5 | 0 | 1 | mean |
Excel formula:
=T_DIST( , 5, 0, 1, "mean")
Expected output:
Result |
---|
0.0 |
Python Code
from scipy.stats import t as scipy_t
import math
def t_dist(value=None, df=1.0, loc=0.0, scale=1.0, method="pdf"):
"""
Student's t distribution function supporting multiple methods.
Args:
value: Input value (float), required for methods except 'mean', 'median', 'var', 'std'.
df: Degrees of freedom (float, >0).
loc: Location parameter (float, default: 0.0).
scale: Scale parameter (float, default: 1.0, >0).
method: Which method to compute (str): 'pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'. Default is 'pdf'.
Returns:
Result of the requested method (float or str), or an error message (str) if input is invalid.
"""
valid_methods = ['pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std']
if not isinstance(method, str) or method.lower() not in valid_methods:
return f"Invalid method: {method}. Must be one of {valid_methods}."
method = method.lower()
try:
df = float(df)
loc = float(loc)
scale = float(scale)
except Exception:
return "Invalid input: df, loc, and scale must be numbers."
if df <= 0:
return "Invalid input: df must be > 0."
if scale <= 0:
return "Invalid input: scale must be > 0."
dist = scipy_t(df, loc, scale)
# Methods that require value
if method in ['pdf', 'cdf', 'icdf', 'sf', 'isf']:
if value is None:
return f"Invalid input: missing required argument 'value' for method '{method}'."
try:
value = float(value)
except Exception:
return "Invalid input: value must be a number."
try:
if method == 'pdf':
result = dist.pdf(value)
elif method == 'cdf':
result = dist.cdf(value)
elif method == 'sf':
result = dist.sf(value)
elif method == 'isf':
if not (0 <= value <= 1):
return "Invalid input: value (probability) must be between 0 and 1 for isf."
result = dist.isf(value)
elif method == 'icdf':
if not (0 <= value <= 1):
return "Invalid input: value (probability) must be between 0 and 1 for icdf."
result = dist.ppf(value)
except Exception as e:
return f"scipy.stats.t error: {e}"
if isinstance(result, float):
if math.isnan(result):
return "Result is NaN (not a number)"
if math.isinf(result):
return "inf" if result > 0 else "-inf"
return result
# Methods that do not require value
try:
if method == 'mean':
result = dist.mean()
elif method == 'median':
result = dist.median()
elif method == 'var':
result = dist.var()
elif method == 'std':
result = dist.std()
except Exception as e:
return f"scipy.stats.t error: {e}"
if isinstance(result, float):
if math.isnan(result):
return "Result is NaN (not a number)"
if math.isinf(result):
return "inf" if result > 0 else "-inf"
return result
Live Notebook
Edit this function in a live notebook .