NORM
Overview
The NORM
function provides a unified interface to the main methods of the Normal (Gaussian) distribution, including PDF, CDF, inverse CDF, survival function, and distribution statistics.
Excel provides the NORM.DIST and NORM.INV functions, which can compute the PDF, CDF, and quantile (inverse CDF) for the normal distribution. The Python function in Excel here also supports the survival function, inverse survival, and distribution statistics (mean, median, variance, standard deviation), as well as location and scale parameters, which are not available in native Excel functions.
The Normal distribution is one of the most widely used probability distributions in statistics, natural sciences, and engineering. It is characterized by its bell-shaped curve and is defined by its mean (loc
) and standard deviation (scale
). The PDF is given by:
for , .
The Normal distribution is a continuous probability distribution that is symmetric about its mean. The parameters are:
loc
: Mean of the distribution.scale
: Standard deviation (must be ).
For more details, see the official SciPy documentation .
This example function is provided as-is without any representation of accuracy.
Usage
To use the function in Excel:
=NORM(value, [loc], [scale], [method])
value
(float, required for pdf, cdf, icdf, sf, isf):- For
pdf
,cdf
,sf
: the value at which to evaluate the function - For
icdf
,isf
: the probability (must be between 0 and 1) - For
mean
,median
,var
,std
: skip parameter
- For
loc
(float, optional, default=0.0): Mean of the distribution.scale
(float, optional, default=1.0): Standard deviation. Must be .method
(string, optional, default=“pdf”): One ofpdf
,cdf
,icdf
,sf
,isf
,mean
,median
,var
,std
.
Method | Description | Output |
---|---|---|
pdf | Probability Density Function: , the likelihood of a specific value . | Density at |
cdf | Cumulative Distribution Function: , the probability that is less than or equal to . | Probability |
icdf | Inverse CDF (Quantile Function): Returns such that for a given probability . | Value |
sf | Survival Function: , the probability that is greater than . | Probability |
isf | Inverse Survival Function: Returns such that for a given probability . | Value |
mean | Mean (expected value) of the distribution. | Mean value |
median | Median of the distribution. | Median value |
var | Variance of the distribution. | Variance |
std | Standard deviation of the distribution. | Standard deviation |
The function returns a single value (float): the result of the requested method, or an error message (string) if the input is invalid.
Examples
Example 1: PDF at x=0
Inputs:
value | loc | scale | method |
---|---|---|---|
0 | 0 | 1 |
Excel formula:
=NORM(0, 0, 1, "pdf")
Expected output:
Result |
---|
0.398942 |
Example 2: CDF at x=1
Inputs:
value | loc | scale | method |
---|---|---|---|
1 | 0 | 1 | cdf |
Excel formula:
=NORM(1, 0, 1, "cdf")
Expected output:
Result |
---|
0.841345 |
Example 3: Inverse CDF (Quantile) at q=0.841345
Inputs:
value | loc | scale | method |
---|---|---|---|
0.841345 | 0 | 1 | icdf |
Excel formula:
=NORM(0.841345, 0, 1, "icdf")
Expected output:
Result |
---|
1.000001 |
Example 4: Mean of the distribution
Inputs:
value | loc | scale | method |
---|---|---|---|
0 | 1 | mean |
Excel formula:
=NORM( , 0, 1, "mean")
Expected output:
Result |
---|
0.0 |
Python Code
from scipy.stats import norm as scipy_norm
import math
def norm(value=None, loc=0.0, scale=1.0, method="pdf"):
"""
Normal (Gaussian) distribution function supporting multiple methods.
Args:
value: Input value (float), required for methods except 'mean', 'median', 'var', 'std'.
loc: Mean (float, default: 0.0).
scale: Standard deviation (float, default: 1.0, >0).
method: Which method to compute (str): 'pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'. Default is 'pdf'.
Returns:
Result of the requested method (float or str), or an error message (str) if input is invalid.
This example function is provided as-is without any representation of accuracy.
"""
valid_methods = ['pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std']
if not isinstance(method, str) or method.lower() not in valid_methods:
return f"Invalid method: {method}. Must be one of {valid_methods}."
method = method.lower()
try:
loc = float(loc)
scale = float(scale)
except Exception:
return "Invalid input: loc and scale must be numbers."
if scale <= 0:
return "Invalid input: scale must be > 0."
dist = scipy_norm(loc, scale)
# Methods that require value
if method in ['pdf', 'cdf', 'icdf', 'sf', 'isf']:
if value is None:
return f"Invalid input: missing required argument 'value' for method '{method}'."
try:
value = float(value)
except Exception:
return "Invalid input: value must be a number."
try:
if method == 'pdf':
result = dist.pdf(value)
elif method == 'cdf':
result = dist.cdf(value)
elif method == 'sf':
result = dist.sf(value)
elif method == 'isf':
if not (0 <= value <= 1):
return "Invalid input: value (probability) must be between 0 and 1 for isf."
result = dist.isf(value)
elif method == 'icdf':
if not (0 <= value <= 1):
return "Invalid input: value (probability) must be between 0 and 1 for icdf."
result = dist.ppf(value)
except Exception as e:
return f"scipy.stats.norm error: {e}"
if isinstance(result, float):
if math.isnan(result):
return "Result is NaN (not a number)"
if math.isinf(result):
return "inf" if result > 0 else "-inf"
return result
# Methods that do not require value
try:
if method == 'mean':
result = dist.mean()
elif method == 'median':
result = dist.median()
elif method == 'var':
result = dist.var()
elif method == 'std':
result = dist.std()
except Exception as e:
return f"scipy.stats.norm error: {e}"
if isinstance(result, float):
if math.isnan(result):
return "Result is NaN (not a number)"
if math.isinf(result):
return "inf" if result > 0 else "-inf"
return result
Live Notebook
Edit this function in a live notebook .