Skip to Content

WEIBULL_MIN

Overview

The WEIBULL_MIN function provides a unified interface to the main methods of the Weibull minimum distribution, including PDF, CDF, inverse CDF, survival function, and distribution statistics.

Excel provides the WEIBULL.DIST function, which can compute the PDF and CDF for the Weibull distribution. However, the Python function in Excel provided here supports additional features such as the inverse CDF (quantile), survival function, inverse survival function, and distribution statistics (mean, median, variance, standard deviation).

The Weibull minimum distribution is widely used in reliability engineering, survival analysis, and extreme value theory. The PDF is given by:

f(x,c,loc,scale)=cscale(xlocscale)c1exp((xlocscale)c)f(x, c, loc, scale) = \frac{c}{scale} \left(\frac{x - loc}{scale}\right)^{c-1} \exp\left(-\left(\frac{x - loc}{scale}\right)^c\right)

for xlocx \geq loc, c>0c > 0, scale>0scale > 0.

The shape parameter (c) controls the form of the distribution, while the location (loc) and scale (scale) parameters shift and stretch the distribution, respectively.

For more details, see the official SciPy documentation.

This example function is provided as-is without any representation of accuracy.

Usage

To use the function in Excel:

=WEIBULL_MIN(value, c, [loc], [scale], [method])
  • value (float, required for pdf, cdf, icdf, sf, isf):
    • For pdf, cdf, sf: the value xx at which to evaluate the function (must be loc\geq loc)
    • For icdf, isf: the probability qq (must be between 0 and 1)
    • For mean, median, var, std: skip parameter
  • c (float, required): Shape parameter. Must be >0> 0.
  • loc (float, optional, default=0.0): Location parameter.
  • scale (float, optional, default=1.0): Scale parameter. Must be >0> 0.
  • method (string, optional, default=“pdf”): One of pdf, cdf, icdf, sf, isf, mean, median, var, std.
MethodDescriptionOutput
pdfProbability Density Function: f(x)f(x), the likelihood of a specific value xx.Density at xx
cdfCumulative Distribution Function: P(Xx)P(X \leq x), the probability that XX is less than or equal to xx.Probability
icdfInverse CDF (Quantile Function): Returns xx such that P(Xx)=qP(X \leq x) = q for a given probability qq.Value xx
sfSurvival Function: P(X>x)P(X > x), the probability that XX is greater than xx.Probability
isfInverse Survival Function: Returns xx such that P(X>x)=qP(X > x) = q for a given probability qq.Value xx
meanMean (expected value) of the distribution.Mean value
medianMedian of the distribution.Median value
varVariance of the distribution.Variance
stdStandard deviation of the distribution.Standard deviation

The function returns a single value (float): the result of the requested method, or an error message (string) if the input is invalid.

Examples

Example 1: PDF at x=2

Inputs:

valueclocscalemethod
21.501pdf

Excel formula:

=WEIBULL_MIN(2, 1.5, 0, 1, "pdf")

Expected output:

Result
0.125382

Example 2: CDF at x=2

Inputs:

valueclocscalemethod
21.501cdf

Excel formula:

=WEIBULL_MIN(2, 1.5, 0, 1, "cdf")

Expected output:

Result
0.940894

Example 3: Inverse CDF (Quantile) at q=0.940894

Inputs:

valueclocscalemethod
0.9408941.501icdf

Excel formula:

=WEIBULL_MIN(0.940894, 1.5, 0, 1, "icdf")

Expected output:

Result
2.0

Example 4: Mean of the distribution

Inputs:

valueclocscalemethod
1.501mean

Excel formula:

=WEIBULL_MIN( , 1.5, 0, 1, "mean")

Expected output:

Result
0.902745

Python Code

from scipy.stats import weibull_min as scipy_weibull_min import math def weibull_min(value=None, c=1.0, loc=0.0, scale=1.0, method="pdf"): """ Weibull minimum distribution function supporting multiple methods. Args: value: Input value (float), required for methods except 'mean', 'median', 'var', 'std'. c: Shape parameter (float, >0). loc: Location parameter (float, default: 0.0). scale: Scale parameter (float, default: 1.0, >0). method: Which method to compute (str): 'pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'. Default is 'pdf'. Returns: Result of the requested method (float or str), or an error message (str) if input is invalid. This example function is provided as-is without any representation of accuracy. """ valid_methods = ['pdf', 'cdf', 'icdf', 'sf', 'isf', 'mean', 'median', 'var', 'std'] if not isinstance(method, str) or method.lower() not in valid_methods: return f"Invalid method: {method}. Must be one of {valid_methods}." method = method.lower() try: c = float(c) loc = float(loc) scale = float(scale) except Exception: return "Invalid input: c, loc, and scale must be numbers." if c <= 0: return "Invalid input: c must be > 0." if scale <= 0: return "Invalid input: scale must be > 0." dist = scipy_weibull_min(c, loc, scale) # Methods that require value if method in ['pdf', 'cdf', 'icdf', 'sf', 'isf']: if value is None: return f"Invalid input: missing required argument 'value' for method '{method}'." try: value = float(value) except Exception: return "Invalid input: value must be a number." if method in ['pdf', 'cdf', 'sf'] and value < loc: return "Invalid input: value must be >= loc for this method." try: if method == 'pdf': result = dist.pdf(value) elif method == 'cdf': result = dist.cdf(value) elif method == 'sf': result = dist.sf(value) elif method == 'isf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for isf." result = dist.isf(value) elif method == 'icdf': if not (0 <= value <= 1): return "Invalid input: value (probability) must be between 0 and 1 for icdf." result = dist.ppf(value) except Exception as e: return f"scipy.stats.weibull_min error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result # Methods that do not require value try: if method == 'mean': result = dist.mean() elif method == 'median': result = dist.median() elif method == 'var': result = dist.var() elif method == 'std': result = dist.std() except Exception as e: return f"scipy.stats.weibull_min error: {e}" if isinstance(result, float): if math.isnan(result): return "Result is NaN (not a number)" if math.isinf(result): return "inf" if result > 0 else "-inf" return result

Live Notebook

Edit this function in a live notebook.

Live Demo

Last updated on