GROWTH_POWER

Overview

The GROWTH_POWER function fits a collection of power-law and power-based growth models to observed data using non-linear least squares optimization. Power laws describe functional relationships where one quantity varies as a power of another, exhibiting scale invariance—a property that appears throughout physics, biology, economics, and many other disciplines. These models are particularly valuable for describing allometric relationships, where biological or physical quantities scale with size according to characteristic exponents.

This implementation leverages scipy.optimize.curve_fit from the SciPy library to perform non-linear least squares fitting. The function minimizes the sum of squared residuals between the observed data and the model predictions using the Levenberg-Marquardt algorithm (for unconstrained problems) or trust region reflective methods (when bounds are specified).

The function supports nine distinct power-based growth models:

  • Allometric Power Scaling: y = a \cdot x^b, the classic power law used in biological scaling studies such as Kleiber’s law relating metabolic rate to body mass
  • Power Law With Baseline: y = a + b \cdot x^c, adding a constant offset to the standard power law
  • Temperature Dependent Power: y = a \cdot (x - b)^c, incorporating a threshold or shift parameter
  • Bounded Power Growth: y = a \cdot (1 - x^{-b}), approaching an asymptote as x increases
  • Unit Offset Power Growth: y = a \cdot (1 + x)^b, useful when x values start near zero
  • Asymptotic Cumulative Power: y = 1 - (1 + ax)^{-b}, modeling saturation effects
  • Simple Allometric Scaling: y = x^A, a single-parameter power function
  • Monomolecular Growth: y = A \cdot (1 - e^{-k(x - x_c)}) for x \geq x_c, combining exponential saturation with a threshold
  • Monomolecular Asymptotic: y = A_1 - A_2 \cdot e^{-kx}, modeling approach to a limiting value

The function returns the fitted parameter values along with their standard errors, derived from the covariance matrix of the fit. For more information on the underlying optimization algorithm, see the SciPy curve_fit documentation and the SciPy GitHub repository.

This example function is provided as-is without any representation of accuracy.

Excel Usage

=GROWTH_POWER(xdata, ydata, growth_power_model)
  • xdata (list[list], required): The xdata value
  • ydata (list[list], required): The ydata value
  • growth_power_model (str, required): The growth_power_model value

Returns (list[list]): 2D list [param_names, fitted_values, std_errors], or error string.

Examples

Example 1: Demo case 1

Inputs:

growth_power_model xdata ydata
allometric_power_scaling 0.1 0.374064608026873
1.3250000000000002 3.6594822459396226
2.5500000000000003 7.516690772388122
3.7750000000000004 11.489638331540139
5 14.841430473579063

Excel formula:

=GROWTH_POWER("allometric_power_scaling", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {0.374064608026873;3.6594822459396226;7.516690772388122;11.489638331540139;14.841430473579063})

Expected output:

a b
2.878 1.025
0.1311 0.03201

Example 2: Demo case 2

Inputs:

growth_power_model xdata ydata
power_law_with_baseline 0.1 2.9556927955786785
1.3250000000000002 4.861862952838822
2.5500000000000003 8.415807793967966
3.7750000000000004 13.229237782671369
5 20.43619182517326

Excel formula:

=GROWTH_POWER("power_law_with_baseline", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {2.9556927955786785;4.861862952838822;8.415807793967966;13.229237782671369;20.43619182517326})

Expected output:

a b c
3.078 0.9783 1.783
0.2649 0.1482 0.09111

Example 3: Demo case 3

Inputs:

growth_power_model xdata ydata
temperature_dependent_power 0.6 0.17513616236186072
1.1 1.2998244444701483
1.6 3.0790577159743244
2.1 5.375837224784517
2.6 8.120899301991956

Excel formula:

=GROWTH_POWER("temperature_dependent_power", {0.6;1.1;1.6;2.1;2.6}, {0.17513616236186072;1.2998244444701483;3.0790577159743244;5.375837224784517;8.120899301991956})

Expected output:

a b c
2.3 0.4 1.6
4.945e-15 1.312e-15 1.612e-15

Example 4: Demo case 4

Inputs:

growth_power_model xdata ydata
bounded_power_growth 0.1 -27.80927559573639
1.3250000000000002 0.6210685038833452
2.5500000000000003 2.1071516786522095
3.7750000000000004 2.9766459143041493
5 2.102880439067675

Excel formula:

=GROWTH_POWER("bounded_power_growth", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {-27.80927559573639;0.6210685038833452;2.1071516786522095;2.9766459143041493;2.102880439067675})

Expected output:

a b
3.336 0.9702
0.4627 0.05437

Example 5: Demo case 5

Inputs:

growth_power_model xdata ydata
unit_offset_power_growth 0.1 3.171323085774019
1.3250000000000002 6.632539056851305
2.5500000000000003 10.572892291348802
3.7750000000000004 14.603251594729274
5 17.984272980322157

Excel formula:

=GROWTH_POWER("unit_offset_power_growth", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {3.171323085774019;6.632539056851305;10.572892291348802;14.603251594729274;17.984272980322157})

Expected output:

a b
2.848 1.034
0.1123 0.02484

Example 6: Demo case 6

Inputs:

growth_power_model xdata ydata
asymptotic_cumulative_power 0.1 0.2318461919718201
1.3250000000000002 0.7987089849163287
2.5500000000000003 0.8962519472881344
3.7750000000000004 0.9427099539411663
5 0.9375852671398648

Excel formula:

=GROWTH_POWER("asymptotic_cumulative_power", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {0.2318461919718201;0.7987089849163287;0.8962519472881344;0.9427099539411663;0.9375852671398648})

Expected output:

a b
2.697 1.086
0.3602 0.07891

Example 7: Demo case 7

Inputs:

growth_power_model xdata ydata
simple_allometric_scaling 0.1 0.7771971538788792
1.3250000000000002 1.9523277107451198
2.5500000000000003 14.132665275784085
3.7750000000000004 40.971760227468735
5 83.2270020382099

Excel formula:

=GROWTH_POWER("simple_allometric_scaling", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {0.7771971538788792;1.9523277107451198;14.132665275784085;40.971760227468735;83.2270020382099})

Expected output:

A
2.754
0.009169

Example 8: Demo case 8

Inputs:

growth_power_model xdata ydata
monomolecular_growth 0.01 0.03115493403185241
2.0075 2.0664014107726754
4.005 2.7937494899027224
6.0024999999999995 2.7074270198804915
8 2.7719490878826014

Excel formula:

=GROWTH_POWER("monomolecular_growth", {0.01;2.0075;4.005;6.0024999999999995;8}, {0.03115493403185241;2.0664014107726754;2.7937494899027224;2.7074270198804915;2.7719490878826014})

Expected output:

A xc k
2.758 1.853 8.94
0.03536 49570 2864000

Example 9: Demo case 9

Inputs:

growth_power_model xdata ydata
monomolecular_asymptotic 0.01 0.16140033730483777
2.0075 2.7426612620791997
4.005 2.783868226460633
6.0024999999999995 2.8296406358000055
8 2.737755904088638

Excel formula:

=GROWTH_POWER("monomolecular_asymptotic", {0.01;2.0075;4.005;6.0024999999999995;8}, {0.16140033730483777;2.7426612620791997;2.783868226460633;2.8296406358000055;2.737755904088638})

Expected output:

A1 A2 k
2.784 2.678 2.079
0.02682 0.05281 0.6481

Python Code

import numpy as np
from scipy.optimize import curve_fit as scipy_curve_fit
import math

def growth_power(xdata, ydata, growth_power_model):
    """
    Fits growth_power models to data using scipy.optimize.curve_fit. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html for details.

    See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

    This example function is provided as-is without any representation of accuracy.

    Args:
        xdata (list[list]): The xdata value
        ydata (list[list]): The ydata value
        growth_power_model (str): The growth_power_model value Valid options: Allometric Power Scaling, Power Law With Baseline, Temperature Dependent Power, Bounded Power Growth, Unit Offset Power Growth, Asymptotic Cumulative Power, Simple Allometric Scaling, Monomolecular Growth, Monomolecular Asymptotic.

    Returns:
        list[list]: 2D list [param_names, fitted_values, std_errors], or error string.
    """
    def _validate_data(xdata, ydata):
        """Validate and convert both xdata and ydata to numpy arrays."""
        for name, arg in [("xdata", xdata), ("ydata", ydata)]:
            if not isinstance(arg, list) or len(arg) < 2:
                raise ValueError(f"{name}: must be a 2D list with at least two rows")
            vals = []
            for i, row in enumerate(arg):
                if not isinstance(row, list) or len(row) == 0:
                    raise ValueError(f"{name} row {i}: must be a non-empty list")
                try:
                    vals.append(float(row[0]))
                except Exception:
                    raise ValueError(f"{name} row {i}: non-numeric value")
            if name == "xdata":
                x_arr = np.asarray(vals, dtype=np.float64)
            else:
                y_arr = np.asarray(vals, dtype=np.float64)

        if x_arr.shape[0] != y_arr.shape[0]:
            raise ValueError("xdata and ydata must have the same number of rows")
        return x_arr, y_arr

    # Model definitions dictionary
    models = {
        'allometric_power_scaling': {
            'params': ['a', 'b'],
            'model': lambda x, a, b: a * np.power(x, b),
            'guess': lambda xa, ya: (float(np.max(ya)), 1.0),
        },
        'power_law_with_baseline': {
            'params': ['a', 'b', 'c'],
            'model': lambda x, a, b, c: a + b * np.power(x, c),
            'guess': lambda xa, ya: (float(np.min(ya)), float(np.ptp(ya) if np.ptp(ya) else 1.0), 1.0),
        },
        'temperature_dependent_power': {
            'params': ['a', 'b', 'c'],
            'model': lambda x, a, b, c: a * np.power(x - b, c),
            'guess': lambda xa, ya: (float(np.ptp(ya) if np.ptp(ya) else 1.0), float(np.min(xa)), 1.0),
        },
        'bounded_power_growth': {
            'params': ['a', 'b'],
            'model': lambda x, a, b: a * (1.0 - np.power(np.clip(x, 1e-9, None), -b)),
            'guess': lambda xa, ya: (float(np.max(ya) if np.max(ya) else 1.0), 1.0),
        },
        'unit_offset_power_growth': {
            'params': ['a', 'b'],
            'model': lambda x, a, b: a * np.power(1.0 + x, b),
            'guess': lambda xa, ya: (float(np.max(ya) if np.max(ya) else 1.0), 1.0),
        },
        'asymptotic_cumulative_power': {
            'params': ['a', 'b'],
            'model': lambda x, a, b: 1.0 - np.power(1.0 + a * x, -b),
            'guess': lambda xa, ya: (0.5, 1.0),
        },
        'simple_allometric_scaling': {
            'params': ['A'],
            'model': lambda x, A: np.power(np.clip(x, 1e-9, None), A),
            'guess': lambda xa, ya: (1.0,),
        },
        'monomolecular_growth': {
            'params': ['A', 'xc', 'k'],
            'model': lambda x, A, xc, k: np.where(x >= xc, A * (1.0 - np.exp(-k * (x - xc))), 0.0),
            'guess': lambda xa, ya: (float(np.max(ya)), float(np.median(xa)), 0.5),
            'bounds': ([0.0, -np.inf, 0.0], np.inf),
        },
        'monomolecular_asymptotic': {
            'params': ['A1', 'A2', 'k'],
            'model': lambda x, A1, A2, k: A1 - A2 * np.exp(-k * x),
            'guess': lambda xa, ya: (float(np.max(ya)), float(np.ptp(ya) if np.ptp(ya) else 1.0), 0.5),
            'bounds': (0.0, np.inf),
        }
    }

    # Validate model parameter
    if growth_power_model not in models:
        return f"Invalid model: {str(growth_power_model)}. Valid models are: {', '.join(models.keys())}"

    model_info = models[growth_power_model]

    # Validate and convert input data
    try:
        x_arr, y_arr = _validate_data(xdata, ydata)
    except ValueError as e:
        return f"Invalid input: {e}"

    # Perform curve fitting
    try:
        p0 = model_info['guess'](x_arr, y_arr)
        bounds = model_info.get('bounds', (-np.inf, np.inf))
        if bounds == (-np.inf, np.inf):
            popt, pcov = scipy_curve_fit(model_info['model'], x_arr, y_arr, p0=p0, maxfev=10000)
        else:
            popt, pcov = scipy_curve_fit(model_info['model'], x_arr, y_arr, p0=p0, bounds=bounds, maxfev=10000)

        fitted_vals = [float(v) for v in popt]
        for v in fitted_vals:
            if math.isnan(v) or math.isinf(v):
                return "Fitting produced invalid numeric values (NaN or inf)."
    except ValueError as e:
        return f"Initial guess error: {e}"
    except Exception as e:
        return f"curve_fit error: {e}"

    # Calculate standard errors
    std_errors = None
    try:
        if pcov is not None and np.isfinite(pcov).all():
            std_errors = [float(v) for v in np.sqrt(np.diag(pcov))]
    except Exception:
        pass

    return [model_info['params'], fitted_vals, std_errors] if std_errors else [model_info['params'], fitted_vals]

Online Calculator