WAVEFORM

Overview

The WAVEFORM function fits periodic waveform models to experimental data using non-linear least squares regression. It provides a selection of predefined waveform models commonly encountered in signal processing, physics, and engineering applications, including sinusoidal waves, sawtooth waves, and square waves with configurable parameters.

This function leverages scipy.optimize.curve_fit from the SciPy library to minimize the sum of squared residuals between the observed data and the model function. The underlying algorithm uses the Levenberg-Marquardt method for unconstrained problems or the Trust Region Reflective (TRF) method when parameter bounds are specified. For more details on the optimization methods, see the SciPy least_squares documentation.

The function supports six waveform models:

  • Sine Wave Basic: A standard sine wave with adjustable center, width, amplitude, and offset: y = y_0 + A \sin\left(\frac{\pi(x - x_c)}{w}\right)
  • Sine Wave Squared: A squared sine wave useful for modeling intensity or power: y = y_0 + A \sin^2\left(\frac{\pi(x - x_c)}{w}\right)
  • Sine Wave Exponentially Damped: A decaying sinusoidal oscillation common in damped harmonic systems: y = y_0 + A e^{-x/t_0} \sin\left(\frac{\pi(x - x_c)}{w}\right)
  • Sawtooth Wave Periodic: A linear ramp that resets periodically: y = y_0 + \frac{A}{T} \cdot \text{mod}(x - x_0, T)
  • Square Wave Symmetric: A symmetric two-level periodic waveform with 50% duty cycle
  • Square Wave Variable Duty Cycle: A square wave with adjustable duty cycle parameter

The function returns the fitted parameter values along with their standard errors, derived from the covariance matrix of the fit. These errors are computed as the square root of the diagonal elements of the covariance matrix, providing estimates of parameter uncertainty based on a linear approximation around the optimal solution.

This example function is provided as-is without any representation of accuracy.

Excel Usage

=WAVEFORM(xdata, ydata, waveform_model)
  • xdata (list[list], required): The xdata value
  • ydata (list[list], required): The ydata value
  • waveform_model (str, required): The waveform_model value

Returns (list[list]): 2D list [param_names, fitted_values, std_errors], or error string.

Examples

Example 1: Demo case 1

Inputs:

waveform_model xdata ydata
sawtooth_wave_periodic 0.1 0.07788526495582983
1.3250000000000002 0.7150127784838747
2.5500000000000003 1.4191650856475282
3.7750000000000004 2.1275338136813193
5 2.7117273507825037

Excel formula:

=WAVEFORM("sawtooth_wave_periodic", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {0.07788526495582983;0.7150127784838747;1.4191650856475282;2.1275338136813193;2.7117273507825037})

Expected output:

"non-error"

Example 2: Demo case 2

Inputs:

waveform_model xdata ydata
sine_wave_basic 0.1 2.7374148538022562
1.3250000000000002 -2.5091778071395767
2.5500000000000003 1.9496796048687413
3.7750000000000004 -0.6889523065774433
5 -0.7708681386612977

Excel formula:

=WAVEFORM("sine_wave_basic", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {2.7374148538022562;-2.5091778071395767;1.9496796048687413;-0.6889523065774433;-0.7708681386612977})

Expected output:

"non-error"

Example 3: Demo case 3

Inputs:

waveform_model xdata ydata
sine_wave_exponentially_damped 0.01 2.4433955885226224
2.0075 1.3428893089222496
4.005 0.5938760148936298
6.0024999999999995 0.09477767694683044
8 -0.06536814584538272

Excel formula:

=WAVEFORM("sine_wave_exponentially_damped", {0.01;2.0075;4.005;6.0024999999999995;8}, {2.4433955885226224;1.3428893089222496;0.5938760148936298;0.09477767694683044;-0.06536814584538272})

Expected output:

"non-error"

Example 4: Demo case 4

Inputs:

waveform_model xdata ydata
sine_wave_squared 0.1 2.6449440834552127
1.3250000000000002 2.5765705507180185
2.5500000000000003 1.3159662905150942
3.7750000000000004 0.09365364702908215
5 0.2608404481371305

Excel formula:

=WAVEFORM("sine_wave_squared", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {2.6449440834552127;2.5765705507180185;1.3159662905150942;0.09365364702908215;0.2608404481371305})

Expected output:

"non-error"

Example 5: Demo case 5

Inputs:

waveform_model xdata ydata
square_wave_symmetric 0.1 2.770683835789236
1.3250000000000002 2.744242491212298
2.5500000000000003 1.07697060932013
3.7750000000000004 1.1134209821908079
5 1.0402495430764112

Excel formula:

=WAVEFORM("square_wave_symmetric", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {2.770683835789236;2.744242491212298;1.07697060932013;1.1134209821908079;1.0402495430764112})

Expected output:

"non-error"

Example 6: Demo case 6

Inputs:

waveform_model xdata ydata
square_wave_variable_duty_cycle 0.1 2.770683835789236
1.3250000000000002 2.744242491212298
2.5500000000000003 2.77697060932013
3.7750000000000004 1.1134209821908079
5 1.0402495430764112

Excel formula:

=WAVEFORM("square_wave_variable_duty_cycle", {0.1;1.3250000000000002;2.5500000000000003;3.7750000000000004;5}, {2.770683835789236;2.744242491212298;2.77697060932013;1.1134209821908079;1.0402495430764112})

Expected output:

"non-error"

Python Code

import numpy as np
from scipy.optimize import curve_fit as scipy_curve_fit
import math

def waveform(xdata, ydata, waveform_model):
    """
    Fits waveform models to data using scipy.optimize.curve_fit. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html for details.

    See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

    This example function is provided as-is without any representation of accuracy.

    Args:
        xdata (list[list]): The xdata value
        ydata (list[list]): The ydata value
        waveform_model (str): The waveform_model value Valid options: Sawtooth Wave Periodic, Sine Wave Basic, Sine Wave Exponentially Damped, Sine Wave Squared, Square Wave Symmetric, Square Wave Variable Duty Cycle.

    Returns:
        list[list]: 2D list [param_names, fitted_values, std_errors], or error string.
    """
    def _validate_data(xdata, ydata):
        """Validate and convert both xdata and ydata to numpy arrays."""
        for name, arg in [("xdata", xdata), ("ydata", ydata)]:
            if not isinstance(arg, list) or len(arg) < 2:
                raise ValueError(f"{name}: must be a 2D list with at least two rows")
            vals = []
            for i, row in enumerate(arg):
                if not isinstance(row, list) or len(row) == 0:
                    raise ValueError(f"{name} row {i}: must be a non-empty list")
                try:
                    vals.append(float(row[0]))
                except Exception:
                    raise ValueError(f"{name} row {i}: non-numeric value")
            if name == "xdata":
                x_arr = np.asarray(vals, dtype=np.float64)
            else:
                y_arr = np.asarray(vals, dtype=np.float64)

        if x_arr.shape[0] != y_arr.shape[0]:
            raise ValueError("xdata and ydata must have the same number of rows")
        return x_arr, y_arr

    # Model definitions dictionary
    models = {
        'sawtooth_wave_periodic': {
            'params': ['x0', 'y0', 'A', 'T'],
            'model': lambda x, x0, y0, A, T: y0 + (A / T) * np.mod(x - x0, T),
            'guess': lambda xa, ya: (float(np.min(xa)), float(np.mean(ya)), float(np.ptp(ya) if np.ptp(ya) else 1.0), float(np.ptp(xa) if np.ptp(xa) else 1.0)),
            'bounds': ([-np.inf, -np.inf, -np.inf, 0.0], np.inf),
        },
        'sine_wave_basic': {
            'params': ['xc', 'w', 'A', 'y0'],
            'model': lambda x, xc, w, A, y0: y0 + A * np.sin(np.pi * (x - xc) / w),
            'guess': lambda xa, ya: (float(np.median(xa)), float(max((np.max(xa) - np.min(xa)) / 4.0, 1e-6)), float(np.ptp(ya) / 2.0 if np.ptp(ya) else 1.0), float(np.mean(ya))),
            'bounds': ([-np.inf, 0.0, -np.inf, -np.inf], np.inf),
        },
        'sine_wave_exponentially_damped': {
            'params': ['y0', 'xc', 'w', 't0', 'A'],
            'model': lambda x, y0, xc, w, t0, A: y0 + A * np.exp(-x / t0) * np.sin(np.pi * (x - xc) / w),
            'guess': lambda xa, ya: (float(np.mean(ya)), float(np.median(xa)), float(max((np.max(xa) - np.min(xa)) / 4.0, 1e-3)), 1.0, float(np.ptp(ya) if np.ptp(ya) else 1.0)),
            'bounds': ([-np.inf, -np.inf, 0.0, 0.0, -np.inf], np.inf),
        },
        'sine_wave_squared': {
            'params': ['xc', 'w', 'A', 'y0'],
            'model': lambda x, xc, w, A, y0: y0 + A * np.power(np.sin(np.pi * (x - xc) / w), 2),
            'guess': lambda xa, ya: (float(np.median(xa)), float(max((np.max(xa) - np.min(xa)) / 4.0, 1e-3)), float(np.ptp(ya) if np.ptp(ya) else 1.0), float(np.mean(ya))),
            'bounds': ([-np.inf, 0.0, -np.inf, -np.inf], np.inf),
        },
        'square_wave_symmetric': {
            'params': ['a', 'b', 'x0', 'T'],
            'model': lambda x, a, b, x0, T: np.where(np.mod(x - x0, T) < 0.5 * T, a, b),
            'guess': lambda xa, ya: (float(np.max(ya)), float(np.min(ya)), float(np.min(xa)), float(np.ptp(xa) if np.ptp(xa) else 1.0)),
            'bounds': ([-np.inf, -np.inf, -np.inf, 0.0], np.inf),
        },
        'square_wave_variable_duty_cycle': {
            'params': ['a', 'b', 'x0', 'duty', 'T'],
            'model': lambda x, a, b, x0, duty, T: np.where(np.mod(x - x0, T) < duty * T, a, b),
            'guess': lambda xa, ya: (float(np.max(ya)), float(np.min(ya)), float(np.min(xa)), 0.5, float(np.ptp(xa) if np.ptp(xa) else 1.0)),
            'bounds': ([-np.inf, -np.inf, -np.inf, 0.0, 0.0], [np.inf, np.inf, np.inf, 1.0, np.inf]),
        }
    }

    # Validate model parameter
    if waveform_model not in models:
        return f"Invalid model: {str(waveform_model)}. Valid models are: {', '.join(models.keys())}"

    model_info = models[waveform_model]

    # Validate and convert input data
    try:
        x_arr, y_arr = _validate_data(xdata, ydata)
    except ValueError as e:
        return f"Invalid input: {e}"

    # Perform curve fitting
    try:
        p0 = model_info['guess'](x_arr, y_arr)
        bounds = model_info.get('bounds', (-np.inf, np.inf))
        if bounds == (-np.inf, np.inf):
            popt, pcov = scipy_curve_fit(model_info['model'], x_arr, y_arr, p0=p0, maxfev=10000)
        else:
            popt, pcov = scipy_curve_fit(model_info['model'], x_arr, y_arr, p0=p0, bounds=bounds, maxfev=10000)

        fitted_vals = [float(v) for v in popt]
        for v in fitted_vals:
            if math.isnan(v) or math.isinf(v):
                return "Fitting produced invalid numeric values (NaN or inf)."
    except ValueError as e:
        return f"Initial guess error: {e}"
    except Exception as e:
        return f"curve_fit error: {e}"

    # Calculate standard errors
    std_errors = None
    try:
        if pcov is not None and np.isfinite(pcov).all():
            std_errors = [float(v) for v in np.sqrt(np.diag(pcov))]
    except Exception:
        pass

    return [model_info['params'], fitted_vals, std_errors] if std_errors else [model_info['params'], fitted_vals]

Online Calculator