CONTRACTION_SHARP
Overview
Calculate the loss coefficient (K) for a sharp edged pipe contraction (reducer).
Excel Usage
=CONTRACTION_SHARP(Di_large, Di_small, con_sharp_method)
Di_large(float, required): Inside diameter of original (larger) pipe [m]Di_small(float, required): Inside diameter of following (smaller) pipe [m]con_sharp_method(str, optional, default: “Rennels”): Calculation method
Returns (float): Loss coefficient K for the sharp contraction (based on smaller pipe) [-]
Examples
Example 1: Basic sharp contraction (1m to 0.4m)
Inputs:
| Di_large | Di_small |
|---|---|
| 1 | 0.4 |
Excel formula:
=CONTRACTION_SHARP(1, 0.4)
Expected output:
| Result |
|---|
| 0.5301 |
Example 2: Small contraction ratio
Inputs:
| Di_large | Di_small |
|---|---|
| 0.1 | 0.08 |
Excel formula:
=CONTRACTION_SHARP(0.1, 0.08)
Expected output:
| Result |
|---|
| 0.2303 |
Example 3: Sharp contraction with Crane method
Inputs:
| Di_large | Di_small | con_sharp_method |
|---|---|---|
| 0.3 | 0.2 | Crane |
Excel formula:
=CONTRACTION_SHARP(0.3, 0.2, "Crane")
Expected output:
| Result |
|---|
| 0.2778 |
Example 4: Large contraction ratio
Inputs:
| Di_large | Di_small |
|---|---|
| 0.5 | 0.1 |
Excel formula:
=CONTRACTION_SHARP(0.5, 0.1)
Expected output:
| Result |
|---|
| 0.5619 |
Python Code
import micropip
await micropip.install(["fluids"])
from fluids.fittings import contraction_sharp as fluids_contraction_sharp
def contraction_sharp(Di_large, Di_small, con_sharp_method='Rennels'):
"""
Calculate the loss coefficient (K) for a sharp edged pipe contraction (reducer).
See: https://fluids.readthedocs.io/fluids.fittings.html#fluids.fittings.contraction_sharp
This example function is provided as-is without any representation of accuracy.
Args:
Di_large (float): Inside diameter of original (larger) pipe [m]
Di_small (float): Inside diameter of following (smaller) pipe [m]
con_sharp_method (str, optional): Calculation method Valid options: Rennels, Crane, Hooper. Default is 'Rennels'.
Returns:
float: Loss coefficient K for the sharp contraction (based on smaller pipe) [-]
"""
try:
Di1 = float(Di_large)
Di2 = float(Di_small)
except (ValueError, TypeError):
return "Error: Di_large and Di_small must be numbers."
if Di1 <= 0 or Di2 <= 0:
return "Error: Diameters must be positive."
if Di2 >= Di1:
return "Error: Di_small must be less than Di_large."
try:
result = fluids_contraction_sharp(Di1=Di1, Di2=Di2, method=con_sharp_method)
return float(result)
except Exception as e:
return f"Error: {str(e)}"